
Graph Algorithms Reference Sheet

breadth-first-search() {
 make a queue of nodes.
 enqueue the start node.
 color the start node yellow.

 while (the queue is not empty) {
 dequeue a node from the queue.
 color that node green.

 for (each neighboring node) {
 if (that node is gray) {
 color the node yellow.
 enqueue it.
 }
 }
 }
}

dijkstra's-algorithm() {
 make a priority queue of nodes.
 enqueue the start node at distance 0.
 color the start node yellow.

 while (the queue is not empty) {
 dequeue a node from the queue.
 if (that node isn't green) {
 color that node green.

 for (each neighboring node) {
 if (that node is not green) {
 color the node yellow.
 enqueue it at the new distance.
 }
 }
 }
 }
}

aStarSearch() {
 make a priority queue of nodes.
 enqueue the start node at distance 0.
 color the start node yellow.

 while (the queue is not empty) {
 dequeue a node from the queue.
 if (that node isn't green) {
 color that node green.

 for (each neighboring node) {
 if (that node is not green) {
 color the node yellow.
 enqueue it at the new distance plus the heuristic.
 }
 }
 }
 }
}

kruskals-algorithm() {
 remove all edges from the graph.
 put each node into its own cluster.
 for (each edge, in increasing order of cost) {
 if (the edge’s endpoints are in different clusters) {
 add that edge back to the graph.
 merge those two clusters.
 }
 }
 return the edges added back.
}

